42+8 = 50, will be treated as malpractice. blank pages remaining evaluator and /or equations written eg, on the cross lines draw diagonal compulsorily Any revealing of identification, appeal Important Note: 1. On completing your answers, 2. Any revealing of identification

Third Semester B.E. Degree Examination, Dec.2017/Jan,2018 Data Structures with C

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

- 1 a. What are the various memory allocation techniques? Explain them with example. (06 Marks)
 - b. What is recursion? What are the various types of recursion explain with example. (06 Marks)
 - c. What is a magic square? What is the procedure given by coxeter to generate the magic square? (08 Marks)
- 2 a. Point out the differences between malloc() and calloc() (04 Marks)
 - b. Write an algorithm to add two polynomials using abstract data type polynomial. (08 Marks)
 - c. Write an algorithm to search for an element in the sparse matrix represented as a triple.

(08 Marks)

- 3 a. Define stack, write an ADT of it.
 - b. Convert the following infix to postfix notations. (04 Marks)
 - i) $((A + (B C)*D)^{^{^{^{^{^{}}}}}E + F)$
 - ii) $X^{Y}Z M + N + P/O$.

(06 Marks)

- c. Write an algorithm to implement queue full and queue empty functions for the non circular queue.

 (10 Marks)
- 4 a. What are linked lists? Point out its types and how a linked list is represented in 'C'?

(04 Marks)

b. Write a 'C' functions to insert an item at the front end of the list.

(04 Marks)

- c. What are double linked lists. Explain the procedure or a 'C' function how to insert a node at the front end and at the rear end.

 (10 Marks)
- d. Point out any two differences between single and double link lists.

(02 Marks)

PART-B

- 5 a. Define the following: i) Strictly binary tree
 -) Strictly binary tree ii) Skewed tree
 - iii) Complete binary tree iv) Binary search tree.

(04 Marks)

b. Consider a binary tree, given in Fig.Q5(b).

Write the preorder, postorder and inorder traversals of the binary tree of Fig. Q5(b) (06 Marks)

Fig.Q5(b)

- c. Write a 'C' functions to traverse the tree in inorder, preorder, and postorder level. (06 Marks)
- d. What are threaded binary trees? What are its types? How they are different from normal binary trees.

 (04 Marks)

- 6 a. What is a binary search tree? Explain how to insert an element in it. (05 Marks)
 - b. Consider the following forest given in Fig. 6(b) and convert the forest into a binary tree.

 (05 Marks)

BOD F D

Fig. 06(b)

c.	What is a selection tree? What are its types and explain them briefly.	(04 Marks)
d.	What is an adjacency matrix and adjacency list explain both with an example.	(06 Marks)

- 7 a. What is single ended and double ended priority queues?

 b. What is a binomial heap? What are the types of binomial heaps?

 c. What is a Fibonacci heap? What are the types of Fibonacci heaps?

 d. What is a paring heap? What are its types?

 (05 Marks)
- 8 a. What is an AVL tree? Write an algorithm to create an AVL tree. (10 Marks)
 b. What is a Red Black tree? What is the rank of a node in a red-black tree? How a red-black tree can be represented? (10 Marks)